
Hans-Petter Halvorsen

https://www.halvorsen.blog

Create User page and Login page
in PHP and MySQL

Contents
• Introduction

– Overview of existing PHP and MySQL CRUD Web Application
• Security and Passwords
• Create Database and User Page

– Create Database
– Create User Page

• Create Login Page
• Check if User is Logged in
• Improvements and Additional Resources

– 2-Factor Authentication
– Authorization

• Summary

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

Create User page and Login page in PHP

Introduction
• This tutorial will demonstrate how to create

basic login functionality in PHP.
• We show the principles on a Books/Library

Application created earlier.
• The focus is to learn how to implement basic

login functionality, so user experience, layout,
robustness, code structure, code quality, etc.
can be significantly improved compared to the
simplified examples given here.

Books Web Application
This is the existing PHP Application made. The focus was to create CRUD
functionality, i.e., Create, Read, Update and Delete data in a MySQL
database. The next step would be to add some authentication functionality.

Books PHP Web Application
The Books PHP CRUD Web Application consists of the
following files:
• config.php
• books.php
• book_create.php
• book_create_db.php
• book_update
• book_update_db.php
• book_delete.php

CRUD – Create, Read, Update and
Delete Data in the MySQL Database

Books PHP Web Application

https://www.youtube.com/playlist?list=PLdb-TcK6Aqj2sRt7bKIscKaGvvg37YHeM

https://www.youtube.com/playlist?list=PLdb-TcK6Aqj2sRt7bKIscKaGvvg37YHeM

New Library Application
Start page

Login page

After login

Books only available if
the user has logged in

Create User and Login
We will update the Books WebApp with Login functionality. Here is a simple
step by step procedure to do that:
1. Create a new Database Table with Username and Password

information.
2. Crete a “NewUser” page that inserts UserName and Password

information into the Database.
– Here you can use the built-in “password_hash” PHP function.

3. Create a “Login” page where the user needs to enter UserName and
Password.
– Check the entered UserName and Password with the information stored in

the Database. Here you can use the built-in “password_verify” PHP function.
– If Password is correct, create a Session variable that says the user is logged

in.
4. In all other PHP files, perform a check in the beginning whether the user

is logged in or not (check if the session variable is true)

Tools
• PHP - a server scripting language for making dynamic web pages,

typically communicating with a Database.
• MySQL - a widely used relational database management system

(RDBMS). MySQL is free and open-source.
• We will host our PHP files on an existing Web Server that supports PHP

and MySQL. You can also create your own or use an existing hosting
provider.

• We will use Visual Studio Code (you can use another IDE if you prefer).
• We will transfer the local files to the Web Server using FTP (File Transfer

Protocol). We will use WinSCP (you can use another FTP tool if you
prefer).

• phpMyAdmin - a free and open-source administration tool for MySQL
(and MariaDB).

Hans-Petter Halvorsen

https://www.halvorsen.blog

Security and
Passwords

Table of Contents

Create User page and Login page in PHP

Security and Passwords
Here are some security and password related
topics that we should know about.
• Authentication vs Authorization.
• Encryption and Decrypting.
• Hashing.
• Salting.
• 2 Factor Authentication.
• Etc.

Authentication vs Authorization
• Authentication is a process to authenticate

a user, that is, to verify that someone is who
they say they are.

• Authorization is about determining a user's
level of access and then granting access
based on that level.

We will focus on Authentication in this tutorial.

Authentication

Username:
Johnny

Password:
Password123

If User enters correct
Username and Password, he
gets access to the system.

User

Simplified Example of Authentication:

Database

Authorization

Username:
Johnny

Password:
Password123

“Read” Access Level:
If User = “User X”, he gets access to
read data only.User

“Super User” Access Level:
If User = “User Y”, he gets access to
creating new documents.

“Administrator” Access Level:
If User = “User Z”, he is an
“Administrator” and gets access to
everything.

Simplified Example of Authorization :

Database

Authorization
Here you see a basic example how to implement Authorization in the Database:

Access Levels Examples:
• Student
• Teacher
• Administrator

Features Examples:
• Search
• Show Grades
• Delete User

Here you specify the
Features the different
Access Levels have
access to

A specific User
can be part of
only one Access
Level in this
example

Database

Encryption and Decrypting
• Encryption is to transform information to make it unreadable by

persons that should not have access to the information.
• You need a Key in to transform (decrypt) the information back to plain

text.
• To encrypt data, you use an algorithm. Many different encryption

algorithms do exist.

When should encryption be used?
• Encryption is a two-way function.
• You encrypt information with the intention of decrypting it

later.
• Examples when to use encryption:

– Protecting Files and Information on your Computer
– Protecting your Cloud data
– Transmitting Data between 2 Computers
– Etc.

• Encryption is reversible if you have the key.
• It can be used for password protection, but a better

approach is to use something called “Hashing”.

Hashing
• Password hashing is a way to store passwords by

transforming them into a fixed-length string of
characters, which is not reversible.

• Hashing is a one-way function, while Encryption is a
two-way function.

• Encryption is meant to protect data in transit, while
Hashing is meant to verify that a file or piece of data
hasn’t been altered—that it is authentic. In other
words, it serves as a check-sum.

• Every hash value is unique.

Hashing – 2 Steps

Hashing

Hashed PasswordHashing

Equal?

Create a new
Password in
plain text

Enter your
Password in
plain text

Store Hashed
Password in Database

1. Create Password

2. Login with your Password

Compare the hashed
password stored in the
database with the
hashed password the
user enter when trying to
login.

Possible to hack the Hashed Password?

UserName HashedPassword

Mike 4420d1918bbcf7

Bob 73fb51a0c9be7d

Peter 4420d1918bbcf7

If a Hacker gets access to this Database, he
can see that Mike and Peter have the same
password.
But he does not know the actual password.

Password HashedPassword

tesla 4420d1918bbcf7

friendship 73fb51a0c9be7d

bicycle 7420e1618abcf6

If the Hacker also has access to a so-
called “Rainbow table” (which is
essentially a pre-computed database
of hashes), he may also be able to
find the Password (as seen here).

Password Table for System X

Rainbow table

If you have a complicated password and that
you are not reusing your password several
places, it is less likely that your password is in
such a Rainbow table

Salting
• Salting is a technique typically used for Password Hashing.
• It is a unique value that can be added to the end of the

password to create a different hash value.
• This means two identical passwords don’t end up with the

same hashed value.
• The additional value is referred to as a “salt”.
• This is done to make it even more secure.
• Typically, the Hashing Algorithm uses a Random salt.

– This prevents an attacker from seeing whether users have
the same password.

Hashing with Salt
password = "Password123"

salt = "Tesla"

passwordHashed = HashPassword(password, salt);

password = "Password123"

ph1 = HashPassword(password);

ph2 = HashPassword(password);

Typically, Salting is built into the Hashing Algorithm, and it is changed every time

ph1 ph2

This means if 2 different Users use the same
Password, the Hashed Password will be different!

Hashing with Salt

UserName Password HashedPasswordwithSalt

Mike tesla 4420d1918bbcf7

Bob friendship 73fb51a0c9be7d

Peter tesla 4520d1818cbcf7

If a Hacker gets access to this Database, he cannot see that
Mike and Peter have the same password.
Because a random Salt has made these 2 Hashed
Passwords different!

Assume Mike and Peter use the same Password

Different!

Create User and Login

PasswordDB = password_hash(Password);

valid = password_verify(PasswordDB, Password);

Store Hashed Password in the Database.

Information given by User

Compare Hashed Password stored in
the Database with Password given by
User in Login Page.

Password Functions
$password = 'Password123';

$hashed_password = password_hash($password, PASSWORD_DEFAULT);

$verified = password_verify($password, $hashed_password);

https://www.php.net/manual/en/function.password-verify.php

https://www.php.net/manual/en/function.password-hash.php

password_hash() has built-in salting

You can also choose between different types of hashing algorithms.

Here, $password is entered by the user in the Login page and $hashed_password
is the hashed password database stored in the database

https://www.php.net/manual/en/function.password-verify.php
https://www.php.net/manual/en/function.password-hash.php

2-Factor Authentication
• To make your authentication even better you can also

consider implementing so-called 2-Factor Authentication.
• This can be done in different ways.
• The easiest way is to use email.
• You can, e.g., use a built-in email() function.
• The procedure is then to generate and send a verification

code on email from your web application during the login
process. Then the the user needs to enter the verification
code received on email during the login process.

mail($to, $subject, $message, $headers);

$verificationcode = strtoupper(uniqid());

Hans-Petter Halvorsen

https://www.halvorsen.blog

Create Database
and User Page

Table of Contents

Create User page and Login page in PHP

Books Web Application
This is the existing PHP Application made. The focus was to create CRUD
functionality, i.e., Create, Read, Update and Delete data in a MySQL
database. The next step would be to add some authentication functionality.

New Library Application
Start page

Login page

After login

Books only available if
the user has logged in

Hans-Petter Halvorsen

https://www.halvorsen.blog

Create Database

Table of Contents

Create User page and Login page in PHP

phpMyAdmin

phpMyAdmin is used to administrate your MySQL Database. Here you can create
tables, run SQL queries, etc.
phpMyAdmin is basically just a web application written in PHP. We will use
phpMyAdmin to create a Database Tables and insert some data into that tables.

Library and Books
CREATE TABLE BOOK (

BookId int PRIMARY KEY AUTO_INCREMENT,

Title varchar(100) NOT NULL,

Author varchar(100) NOT NULL,

Topic varchar(100) NOT NULL

);

insert into BOOK (Title, Author, Topic)

values ('Web Apps', 'Elvis Presly', 'Programming');

insert into BOOK (Title, Author, Topic)

values ('IoT and Cloud', 'John Wayne', 'IoT');

insert into BOOK (Title, Author, Topic)

values ('C#', 'Rune Hansen', 'Programming');

User Information
CREATE TABLE PERSON (

PersonId int PRIMARY KEY AUTO_INCREMENT,

FullName varchar(100) NOT NULL,

EMail varchar(100) NOT NULL UNIQUE,

Pwd varchar(100) NULL

);

insert into PERSON (FullName, EMail, Pwd)

values ('xxxxxx', 'xxxxxx', 'xxxxxx');

Hans-Petter Halvorsen

https://www.halvorsen.blog

Create User Page

Table of Contents

Create User page and Login page in PHP

User Administration

Persons/Users

New Person

Save in DB
//Get Post Data

$fullname = $_POST["fullname"];

$email = $_POST["email"];

$password = $_POST["password"];

$password_hashed = password_hash($password, PASSWORD_DEFAULT);

// Insert Data

$sql = "INSERT INTO PERSON (FullName, EMail, Pwd)

VALUES ('$fullname', '$email', '$password_hashed')";

if (mysqli_query($conn, $sql)) {

$message = "New person created successfully.
";

}

else {

$message = "Error: " . $sql . "
" . mysqli_error($conn);

}

$password_hashed = password_hash($password, PASSWORD_DEFAULT);

Update Person

Update DB
<?php
..
//Get GET Data
$personid = $_GET["personid"];

//Get Post Data
$fullname = $_POST["fullname"];
$email = $_POST["email"];
$password = $_POST["password"];
$password_hashed = password_hash($password, PASSWORD_DEFAULT);

// Update Person Data
$sql = "UPDATE PERSON SET FullName='$fullname',
EMail='$email', Pwd='$password_hashed' WHERE PersonId =
$personid";
if (mysqli_query($conn, $sql)) {

$message = "Personal information updated successfully.
";
}
else {

$message = "Error: " . $sql . "
" . mysqli_error($conn);
}

// Close Connection
mysqli_close($conn);
?>

Hans-Petter Halvorsen

https://www.halvorsen.blog

Create Login Page

Table of Contents

Create User page and Login page in PHP

Library App

Li
br

ar
y

Ap
p

-“
lib

ra
ry

.p
hp

”

Login.php

Check Login
//Get Post Data
$email = $_POST["email"];
$password = $_POST["password"];

// Get Password from Database
$sql = "SELECT Pwd FROM PERSON WHERE EMail = '$email'";
$result = mysqli_query($conn, $sql);

if (mysqli_num_rows($result) > 0) {
$row = mysqli_fetch_assoc($result);
$pwd_db = $row["Pwd"];

} else {
echo "0 results";

}

if (password_verify($password, $pwd_db)) {
$_SESSION["LoggedIn"] = TRUE;
$message = "You have been successfully logged in ..";

}
else {
$_SESSION["LoggedIn"] = FALSE;
$message = "Something went wrong! Make sure to check ..";

}

password_verify($password, $pwd_db)

Using Session variables
• We need to store information whether the

User is logged in or not when the user enters
the different pages.

• We can use Session variables to share that
information between multiple web pages.

session_start();
..
$_SESSION["LoggedIn"] = TRUE;

Hans-Petter Halvorsen

https://www.halvorsen.blog

Check if User is
Logged in

Table of Contents

Create User page and Login page in PHP

Check if User is Logged in
• We don’t want the user to get

access to different web pages if he
has not logged in.

• In all other PHP files, perform a
check in the beginning whether the
user is logged in or not (check if the
session variable is true).

<?php
require_once 'config.php';
session_start();

$loggedin = FALSE;
if (isset($_SESSION["LoggedIn"]))

$loggedin = $_SESSION["LoggedIn"];

?>
..

Check if User is Logged in

The Library page will have different
appearance/functionality depending
on the user is logged in or not.

Library page

<?php
require_once 'config.php';
session_start();

$loggedin = FALSE;
if (isset($_SESSION["LoggedIn"]))

$loggedin = $_SESSION["LoggedIn"];

?>
..

Library page Code cont.
..

<p align="right">
<?php if ($loggedin==TRUE)
{

echo "Logout";
}
else
echo "Login";
?>

</p>

<?php if ($loggedin==TRUE)
{

echo "List of Books";
}
else

echo "<p>You need to Login into the system to get access to the

functionality.</p>";
?>
..

Books page
The same check needs to be done in the different Books pages, etc.

Logout page
Here you see the code for the “logout.php” page:

Hans-Petter Halvorsen

https://www.halvorsen.blog

Improvements and
Additional Resources

Table of Contents

Create User page and Login page in PHP

Library Application with Login
Start page

Login page

After login

Books only available if
the user has logged in

Improvements
There are lots of improvements to be made,
some examples are:
• Check if “logged in” in all pages.
• 2-Facor Authentication.
• Authorization.
• +++ like GUI/HMI, Code Structure and Quality,

…

Hans-Petter Halvorsen

https://www.halvorsen.blog

2-Factor
Authentication

Table of Contents

Create User page and Login page in PHP

2-Factor Authentication
• To make your authentication even better you can also

consider implementing so-called 2-Factor Authentication.
• This can be done in different ways.
• The easiest way in PHP is to use email.
• You can use the built-in email() function in PHP
• The procedure is then to generate and send a verification

code on email from your web application during the login
process. Then the user needs to enter the verification
code received on email during the login process.

mail($to, $subject, $message, $headers);

$verificationcode = strtoupper(uniqid());

2-Factor Authentication
Enter Email and Password

Generate Verification Code

Receive Verification
Code on Email

Send Verification
Code on Email

Verify Information with
information stored in

the Database

Login Page Client-side

Enter Verification Code Check Verification
Code

User is ApprovedUser is Logged In

PHP Server-side

$verificationcode =

strtoupper(uniqid());

mail($to, $subject,

$message, $headers);

$verified =

password_verify($password,

$hashed_password);

$_SESSION["LOGIN"]=TRUE

Set Session variable, e.g.,:

Hans-Petter Halvorsen

https://www.halvorsen.blog

Authorization

Table of Contents

Create User page and Login page in PHP

Authentication vs Authorization
• Authentication is a process to authenticate

a user, that is, to verify that someone is who
they say they are.

• Authorization is about determining a user's
level of access and then granting access
based on that level.

So far, we have focused on Authentication in this tutorial.
How can we implement Authorization?

Authorization
In out “Library” application we may want to have different types of users,
examples:
• Administrators

– They can add new Users, edit and delete Users.
• Librarians

– They can create new Books, edit or delete books.
– They can see information regarding book rentals, etc.

• Customers
– They have access to book information, but they cannot create new books, edit

or delete books
– They can rent books, see if books are available or not

=>This can be implemented in different ways, but typically you need to start
to add one or more new tables or columns in the database to handle this in
your application.

Authorization

Username:
Johnny

Password:
Password123

“Customer” Access Level:
If User = “User X”, he gets access to
read data only.User

“Librarian” Access Level:
If User = “User Y”, he gets access to
creating new books, etc.

“Administrator” Access Level:
If User = “User Z”, he is an
“Administrator” and can create, edit
and delete users.

Simplified Example of Authorization :

Database

Authorization
Here you see a basic example how to implement Authorization in the Database:

Access Levels Examples:
• Customer
• Librarian
• Administrator

Features Examples:
• Search
• Create Books
• Delete User
• ..

Here you specify the
Features the different
Access Levels have
access to

A specific User
can be part of
only one Access
Level in this
example

Database

Hans-Petter Halvorsen

https://www.halvorsen.blog

Summary

Table of Contents

Create User page and Login page in PHP

Summary
We have created a basic “Library”
PHP Web Application. The
Application shows a list of Books, but
only after the User has logged into
the system. We have also created
basic User Administration where we
can add, delete and modify Users.

Resources and References
• PHP Tutorial w3school:

https://www.w3schools.com/php/
• PHP Tutorial TutorialsPoint:

https://www.tutorialspoint.com/php/
• PHP Documentation:

https://www.php.net/manual/en/
• MySQL Tutorial: https://www.w3schools.com/mysql
• Bootstrap Tutorial:

https://www.w3schools.com/bootstrap5/

https://www.w3schools.com/php/
https://www.tutorialspoint.com/php/
https://www.php.net/manual/en/
https://www.w3schools.com/mysql
https://www.w3schools.com/bootstrap5/

Hans-Petter Halvorsen
University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

	Start
	Slide 1: Create User page and Login page in PHP and MySQL
	Slide 2: Contents

	Introduction
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Books Web Application
	Slide 6: Books PHP Web Application
	Slide 7: Books PHP Web Application
	Slide 8: New Library Application
	Slide 9: Create User and Login
	Slide 10: Tools

	Security and Passwords
	Slide 14: Security and Passwords
	Slide 15: Security and Passwords
	Slide 16: Authentication vs Authorization
	Slide 17: Authentication
	Slide 18: Authorization
	Slide 19: Authorization
	Slide 20: Encryption and Decrypting
	Slide 21: When should encryption be used?
	Slide 22: Hashing
	Slide 23: Hashing – 2 Steps
	Slide 24: Possible to hack the Hashed Password?
	Slide 25: Salting
	Slide 26: Hashing with Salt
	Slide 27: Hashing with Salt
	Slide 28: Create User and Login
	Slide 29: Password Functions
	Slide 30: 2-Factor Authentication

	Database
	Slide 31: Create Database and User Page
	Slide 32: Books Web Application
	Slide 33: New Library Application
	Slide 34: Create Database
	Slide 35: phpMyAdmin
	Slide 36: Library and Books
	Slide 37: User Information

	Create User
	Slide 38: Create User Page
	Slide 39: User Administration
	Slide 40: Persons/Users
	Slide 41: New Person
	Slide 42: Save in DB
	Slide 43: Update Person
	Slide 44: Update DB

	Login
	Slide 45: Create Login Page
	Slide 46: Library App
	Slide 47: Library App - “library.php”
	Slide 48: Login.php
	Slide 49: Check Login
	Slide 50: Using Session variables

	Check Login
	Slide 51: Check if User is Logged in
	Slide 52: Check if User is Logged in
	Slide 53: Check if User is Logged in
	Slide 54: Library page
	Slide 55: Library page Code cont.
	Slide 56: Books page
	Slide 57: Logout page

	Improvements
	Slide 58: Improvements and Additional Resources
	Slide 59: Library Application with Login
	Slide 60: Improvements

	2-Factor Authentication
	Slide 61: 2-Factor Authentication
	Slide 62: 2-Factor Authentication
	Slide 63: 2-Factor Authentication

	Authorization
	Slide 64: Authorization
	Slide 65: Authentication vs Authorization
	Slide 66: Authorization
	Slide 67: Authorization
	Slide 68: Authorization

	Summary
	Slide 69: Summary
	Slide 70: Summary
	Slide 71: Resources and References

	Finished
	Slide 72

